Compressed Least Squares Regression revisited

نویسنده

  • Martin Slawski
چکیده

We revisit compressed least squares (CLS) regression as originally analyzed in Maillard and Munos (2009) and later on in Kaban (2014) with some refinements. Given a set of high-dimensional inputs, CLS applies a random projection and then performs least squares regression based on the projected inputs of lower dimension. This approach can be beneficial with regard to both computation (yielding a smaller least squares problem) and statistical performance (reducing the estimation error). We will argue below that the outcome of previous analysis of the procedure is not meaningful in typical situations, yielding a bound on the prediction error that is inferior to ordinary least squares while requiring the dimension of the projected data to be of the same order as the original dimension. As a fix, we subsequently present a modified analysis with meaningful implications that much better reflects empirical results with simulated and real data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

’Compressed Least Squares Regression revisited’: Appendix

the best rank-r approximation of X with respect to the Frobenius norm. We write ∆r = X − Tr(X) for the ’residual’. In general, Tr(M) wil be used to denote the best rank-r approximation of a matrix M . Further, PM denotes the orthogonal projection on the subspace spanned by the columns of M , and we write M− for the Moore-Penrose pseudoinverse of a matrix M . The i-th column of M is denoted by M...

متن کامل

Compressed Least-Squares Regression

We consider the problem of learning, from K data, a regression function in a linear space of high dimensionN using projections onto a random subspace of lower dimension M . From any algorithm minimizing the (possibly penalized) empirical risk, we provide bounds on the excess risk of the estimate computed in the projected subspace (compressed domain) in terms of the excess risk of the estimate b...

متن کامل

The least squares method for option pricing revisited

It is shown that the the popular least squares method of option pricing converges even under very general assumptions. This substantially increases the freedom of creating different implementations of the method, with varying levels of computational complexity and flexible approach to regression. It is also argued that in many practical applications even modest non-linear extensions of standard...

متن کامل

ar X iv : 0 70 6 . 05 34 v 1 [ st at . M L ] 4 J un 2 00 7 Compressed Regression

Recent research has studied the role of sparsity in high dimensional regression and signal reconstruction, establishing theoretical limits for recovering sparse models from sparse data. This line of work shows that l1-regularized least squares regression can accurately estimate a sparse linear model from n noisy examples in p dimensions, even if p is much larger than n. In this paper we study a...

متن کامل

Annotated Bibliography High-dimensional Statistical Inference

Recent research has studied the role of sparsity in high dimensional regression and signal reconstruction, establishing theoretical limits for recovering sparse models from sparse data. This line of work shows that l1-regularized least squares regression can accurately estimate a sparse linear model from n noisy examples in p dimensions, even if p is much larger than n. In this paper we study a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017